
ShenaniGANs: A Discussion of Generative
Adversarial Networks

Quinn Meier and John Pace

https://arxiv.org/pdf/1406.2661.pdf

https://arxiv.org/pdf/1406.2661.pdf

Review of Neural Networks
Feature Vector -> Feed Into First

Layer -> Matrix Multiplication with

Weights -> Activation

Function/Dropout -> Repeat Until

Output -> Backpropagate, train until

satisfactory

The Motivation
Deep learning does best with discriminative tasks; does less well with generative tasks

Authors posit that this is due to the relative ease of using piecewise linear units in

classification tasks vs. generative tasks

So what if we put a discriminative task inside of the generative task?

Discussion of Related Work
Other deep generative models try to provide actual probability distributions with

parameters learned by training

These often have ugly likelihood gradients to work with - intractable

‘Generative Machines’ don’t specify an actual probability distribution - they just try to

pop out a function that recreates samples

How to Make an Adversarial Net
To learn a generator’s ‘distribution’ over some data:

1) Define a prior on input noise

2) Define the generator, a map from the noise space to the data space using a

differentiable function modeled by a DNN

3) Define a discriminator function modeled by a DNN that returns the probability

some vector came from the actual data

4) Train discriminator to maximize correct assignments, train generator to confuse

discriminator

See Algorithm 1 in paper for pseudocode implementation

Figure 1 from the journal article - a visual representation of the training process

Discriminator: Blue Arrows on bottom represent the function of the generator

Generator: Green

Data: Black

A Brief Foray Into Game Theory
All that corresponds to playing a ‘minimax game’:

The generator tries to minimize the maximum performance of the discriminator. The

first term corresponds to the discriminator guessing correctly actual data came from

the dataset, the second term corresponds to the discriminator guessing correctly that

generated data came from the generator.

Some Caveats
Can’t optimize discriminator to completion in the inner loop of training - will be

horribly expensive and lead to overfitting

May need to use alternate criterion to train generator in early stages: if discriminator is

too good, generator can’t learn using second term on previous slide

Theoretical Work
Not going to go into detail - involves measure theory and just a bunch of number

shuffling

For annotated proof, see:

https://srome.github.io/An-Annotated-Proof-of-Generative-Adversarial-Networks-with-Implementation-Notes/

https://srome.github.io/An-Annotated-Proof-of-Generative-Adversarial-Networks-with-Implementation-Notes/

The Important Stuff
The theoretical work section proves that:

1) The minimax game has a global minimum when the generator’s distribution is

equal to the data’s distribution

2) Given enough network capacity, the ability to update the generator’s distribution

to improve the minimax game’s criterion, and suitable time for the discriminator

to train towards its optimum for each generator update, the generator’s

distribution will converge to the data’s distribution

Overview of Experiments
Given a few standard image datasets, the model was trained to create new images

Test set data was compared to a Gaussian Parzen window fit to generated samples

using log likelihood

See paper for more generated images

Image from

Experiments

section of article

Advantages/Disadvantages
Advantages:

● Doesn’t use Markov chains - efficient

● Only calculates gradients using backpropagation - efficient

● No inference during learning - efficient

● Model is very flexible - just needs to be differentiable

● Generator doesn’t see actual data - possibly helps with generalizability

Disadvantages:

● No explicit representation of the generator’s distribution over the data space

● Requires tuning of generator and discriminator’s dynamics - possible for generator

to get stuck in degeneracies and lose representability

What Are GANs Being Used For?
Image ‘super-resolution’ - SRGAN: https://arxiv.org/abs/1609.04802

For more examples, read: https://medium.com/@jonathan_hui/gan-some-cool-applications-of-gans-4c9ecca35900

Image taken from

https://modelzoo.co/m

odel/srgan

https://arxiv.org/abs/1609.04802
https://medium.com/@jonathan_hui/gan-some-cool-applications-of-gans-4c9ecca35900
https://modelzoo.co/model/srgan
https://modelzoo.co/model/srgan

What Are GANs Being Used For?
Cross-domain transfer - CycleGAN: https://arxiv.org/abs/1703.10593

(see also: how CycleGAN ‘cheats’: https://arxiv.org/abs/1712.02950)

For more examples, read: https://medium.com/@jonathan_hui/gan-some-cool-applications-of-gans-4c9ecca35900

Image from linked

CycleGAN journal

article

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1712.02950
https://medium.com/@jonathan_hui/gan-some-cool-applications-of-gans-4c9ecca35900

What Are GANs Being Used For?
Text-to-image translation - StackGAN: https://arxiv.org/abs/1612.03242

For more examples, read: https://medium.com/@jonathan_hui/gan-some-cool-applications-of-gans-4c9ecca35900

Image from linked

StackGAN journal article

https://arxiv.org/abs/1612.03242
https://medium.com/@jonathan_hui/gan-some-cool-applications-of-gans-4c9ecca35900

Some fun with StyleGAN (https://arxiv.org/pdf/1812.04948.pdf)
https://www.thispersondoesnotexist.com/

https://thesecatsdonotexist.com/

http://www.whichfaceisreal.com/index.php

https://arxiv.org/pdf/1812.04948.pdf
https://www.thispersondoesnotexist.com/
https://thesecatsdonotexist.com/
http://www.whichfaceisreal.com/index.php

